As discussed during Lecture 13, for the theories one encounters when studying set theory, no absolute consistency results are possible, and we rather look for relative consistency statements. For example, the theories “There is a weakly inaccessible cardinal” and “There is a strongly inaccessible cardinal” are equiconsistent. This means that a weak theory (much less than suffices) can prove . Namely: is a subtheory of , so its inconsistency implies the inconsistency of . Assume is inconsistent and fix a proof of an inconsistency from . Then a proof of an inconsistency from can be found by showing that each is a theorem of , and this argument can be carried out in a theory (such as ) where the syntactic manipulations of formulas that this involves are possible.

It is a remarkable empirical fact that the combinatorial statements studied by set theorists can be measured against a linear scale of consistency, calibrated by the so called large cardinal axioms, of which strongly inaccessible cardinals are perhaps the first natural example. Hypotheses as unrelated as the saturation of the nonstationary ideal or determinacy have been shown equiconsistent with extensions of by large cardinals. One direction (that models with large cardinals generate models of the hypothesis under study) typically involves the method of forcing and won’t be discussed further here. The other direction, just as in the very simple example of weak vs strong inaccessibility, typically requires showing that certain transitive classes (like ) must have large cardinals of the desired sort. We will illustrate these ideas by obtaining large cardinals from determinacy in the last lecture of the course.

We defined the axiom of determinacy . It contradicts choice but it relativizes to the model . This is actually the natural model to study and, in fact, from large cardinals one can prove that .

We illustrated basic consequences of for the theory of the reals by showing that it implies that every set of reals has the perfect set property (and therefore a version of is true under ). Similar arguments give that implies that all sets of reals have the Baire property and are Lebesgue measurable. In the last lecture of the course we will use the perfect set property of sets of reals to show that the consistency of implies the consistency of strongly inaccessible cardinals.

Like this:

LikeLoading...

Related

This entry was posted on Wednesday, June 4th, 2008 at 6:31 pm and is filed under 116c: Set theory. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

The two concepts are different. For example, $\omega$, the first infinite ordinal, is the standard example of an inductive set according to the first definition, but is not inductive in the second sense. In fact, no set can be inductive in both senses (any such putative set would contain all ordinals). In the context of set theory, the usual use of the term […]

I will show that for any positive integers $n,\ell,k$ there is an $M$ so large that for all positive integers $i$, if $i/M\le \ell$, then the difference $$ \left(\frac iM\right)^n-\left(\frac{i-1}M\right)^n $$ is less than $1/k$. Let's prove this first, and then argue that the result follows from it. Note that $$ (i+1)^n-i^n=\sum_{k=0}^{n-1}\binom nk i^ […]

I think it is cleaner to argue without induction. If $n$ is a positive integer and $n\ge 8$, then $7n$ is both less than $n^2$ and a multiple of $n$, so at most $n^2-n$ and therefore $7n+1$ is at most $n^2-n+1

Let PRA be the theory of Primitive recursive arithmetic. This is a subtheory of PA, and it suffices to prove the incompleteness theorem. It is perhaps not the easiest theory to work with, but the point is that a proof of incompleteness can be carried out in a significantly weaker system than the theories to which incompleteness actually applies. It is someti […]