I just learned from the textbook that apparently whether the series

converges is still open, which I find rather surprising. The reference the book lists is the book Mazes for the Mind by Clifford Pickover, St. Martin Press, NY, from 1992, but Dr. Pickover has informed me that he believes the problem is still unresolved; he also discusses it in his book The Mathematics of Oz, Cambridge University Press, 2002. I would be very curious to hear from updates or suggestions, if you have any.

Here is a slightly technical (and very quick, and not particularly deep) observation: The issue seems to be to quantify how small is, when it is small, or more precisely, how sparse the set of values of is for which the sine function is “significantly small.” One could start by looking at so that is small for some , so we are led to consider the standard convergent approximations to , satisfying . This means that is close to, but slightly larger than, and so the question leads us to the problem of how sparse the sequence of numerators of the rational approximations to actually is, something about which I don’t know of any results.

Below I display some graphs for the partial sums of the series. Let . The first graph shows vs. for . In the other graphs, goes up to 300, 1000, and 100000. (Thanks to Richard Ketchersid for the code.) It is not clear to me that the last graph is accurate or that it allows us to draw any conclusions (it certainly seems to suggest that the series converges to a number slightly larger than 30); it may well be that further jumps are beyond the range I chose, or that the approximations Maple uses in its computations are not fine enough to examine very large values of the series.

Notice that examination of just the first few values of would suggest that the series converges to a number near 4.8. In fact, for many “natural” series, the 300-th partial sum gives an accurate approximation of their value. However, as the third graph reveals, a jump suddenly occurs, slightly after we pass the 350-th partial sum. The jump occurs at notice that 355 is very close to an integer multiple of , in fact

Even though the fourth graph does not reveal any further jumps, it is not clear that they won’t occur at certain values of past the 10000 mark.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, November 10th, 2008 at 3:55 pm and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]