This set is due February 20 at the beginning of lecture. Consult the syllabus for details on the homework policy. I do not think this set is particularly difficult, but it is on the longish side of things, so make sure you leave yourself enough time to work on it.

1. Gauß’ fundamental theorem of algebra states that any equation where is a polynomial with complex coefficients, has at least one complex root This means that is a complex number and Show that has at most roots, where is its degree, and that if we count roots up to multiplicity, then it has exactly roots. Since the multiplicity of a root is by definition the largest such that is a factor of you may want to verify that iff is a factor of

2. Let be a polynomial with real coefficients, and let be a complex root of Show that as well. Conclude that if the degree of is odd and the coefficients of are real, then has at least one real root. (You may use the fundamental theorem of algebra, if needed.) Conclude also that if is of degree four and has real coefficients, then can be factored as the product of two quadratic polynomials with real coefficients. (Does this follow “directly” from the argument described in lecture?)

3. Solve exercises 54-56 from Chapter 3 of the book.

4. Show directly that if are real numbers, then at least one of the solutions of is a real number. What I mean is that, rather than appealing to problem 2, you want to look at the solutions obtained by Cardano’s method as described in lecture, and argue directly from the formulas so obtained that at least one of the solutions must be real. Be careful, since your argument should not give you that all three roots are real, since this is not true in general.

5. Show directly that a quartic with complex coefficients admits only 4 roots. What I mean is that, rather than appealing to problem 1, you want to look at the solutions obtained by Ferrari’s method as described in lecture, and argue directly that they only produce 4 roots, even though, in principle, they produce 24 (since they involve solving a cubic and then taking a square root to obtain parameters from which four solutions are then found).

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, February 9th, 2009 at 9:23 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

[…] Homework 2, due February 20, at the beginning of lecture. Possibly related posts: (automatically generated)116b- SyllabusHow to Annoy Your Friends’ Parents and Waste Useful Household Items – An …The Myth About HomeworkHomework battles and the biggest genius in the school, part I […]

[…] -Homework set 4 I am not happy with the solutions I received for problems 4 and 5 of Homework set 2 so, for this new set, due March 2 at the beginning of lecture, you must redo these two problems […]

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]

[…] Homework 2, due February 20, at the beginning of lecture. Possibly related posts: (automatically generated)116b- SyllabusHow to Annoy Your Friends’ Parents and Waste Useful Household Items – An …The Myth About HomeworkHomework battles and the biggest genius in the school, part I […]

[…] -Homework set 4 I am not happy with the solutions I received for problems 4 and 5 of Homework set 2 so, for this new set, due March 2 at the beginning of lecture, you must redo these two problems […]