Suppose that is a field and that It may be that is also a field, using the same operations of For example, if then we could have

Definition 15. If is a field and we say that is a subfield of if is a field with the operations of

Let’s examine this definition in some detail. Part of what this is saying is that

If then also i.e., is closed under addition.

If then also i.e., is closed under multiplication.

However, this is not enough. For example, is not a field but it is closed under the addition and multiplication operations of The problem with is that it does not have additive or multiplicative inverses of its elements.

Proposition 16. Suppose that is a field and that

If then

If and then

Proof. Add the additive inverse to both sides of the first equation, and multiply by the multiplicative inverse both sides of the second equation.

The point of Proposition 16 is the following: Suppose that is a subfield of Write for the -th element of and for the -th element of Then in particular, must belong to Similarly, so belongs to as long as contains some element other than But, of course, if is to be a field, then it must have at least two elements, so one of them must be different from

Proposition 17. Suppose is a field and that

If then

If then and

Proposition 17 can be proved by a very similar argument to that of Proposition 16, so I omit the proof. The point of this proposition is that if is a subfield of and then the additive inverse of from the point of view of and its additive inverse from the point of view of must coincide. Similarly, the multiplicative inverse from the point of view of of any nonzero element of is the same as its multiplicative inverse from the point of view of Hence, to properties 1,2 listed above we can add:

3. If then

And:

4. If and then

It turns out that 1–4 characterize subfields:

Theorem 18. Suppose is a field and If satisfies 1–4 and has at least two elements, then is a subfield of

Noticed that we cannot remove the assumption that has two elements. For example, satisfies properties 1–4 but is not a field.

We will prove this theorem next lecture and use it to produce many new examples of fields.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, February 20th, 2009 at 1:11 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]

[…] -Fields (5) At the end of last lecture we stated a theorem giving an easy characterization of subfields of a given field We begin by […]