Suppose that is a field and that It may be that is also a field, using the same operations of For example, if then we could have

Definition 15. If is a field and we say that is a subfield of if is a field with the operations of

Let’s examine this definition in some detail. Part of what this is saying is that

If then also i.e., is closed under addition.

If then also i.e., is closed under multiplication.

However, this is not enough. For example, is not a field but it is closed under the addition and multiplication operations of The problem with is that it does not have additive or multiplicative inverses of its elements.

Proposition 16. Suppose that is a field and that

If then

If and then

Proof. Add the additive inverse to both sides of the first equation, and multiply by the multiplicative inverse both sides of the second equation.

The point of Proposition 16 is the following: Suppose that is a subfield of Write for the -th element of and for the -th element of Then in particular, must belong to Similarly, so belongs to as long as contains some element other than But, of course, if is to be a field, then it must have at least two elements, so one of them must be different from

Proposition 17. Suppose is a field and that

If then

If then and

Proposition 17 can be proved by a very similar argument to that of Proposition 16, so I omit the proof. The point of this proposition is that if is a subfield of and then the additive inverse of from the point of view of and its additive inverse from the point of view of must coincide. Similarly, the multiplicative inverse from the point of view of of any nonzero element of is the same as its multiplicative inverse from the point of view of Hence, to properties 1,2 listed above we can add:

3. If then

And:

4. If and then

It turns out that 1–4 characterize subfields:

Theorem 18. Suppose is a field and If satisfies 1–4 and has at least two elements, then is a subfield of

Noticed that we cannot remove the assumption that has two elements. For example, satisfies properties 1–4 but is not a field.

We will prove this theorem next lecture and use it to produce many new examples of fields.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, February 20th, 2009 at 1:11 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

[…] -Fields (5) At the end of last lecture we stated a theorem giving an easy characterization of subfields of a given field We begin by […]