Problem 1 is Exercise 7.1.36 from the book. Here is a graph showing the curve for

We rotate about the line the region bounded by the -axis and this curve.

To find its volume, a first natural attempt would be to use the washer method. We would then attempt to compute the volume as

where is the maximum of for and, for any given value of with and are the values of with such that

Unfortunately, this does not seem to be the best approach, as there does not seem to be a reasonable way of solving for the equation

(In fact, this equation cannot be solved in terms of elementary functions.

Similarly, there is no way of finding exactly what the value of is in terms of elementary functions.)

Since this approach seems to lead us nowhere, we now try to compute the volume using the shell method. Now the volume is expressed as

This expression looks approachable with the techniques we have studied. First, let’s rewrite the integral as

We compute both expressions using integration by parts:

To find we use and so and we can take Hence

We recognize from the graph of that the second expression is zero, and we have:

Similarly, for we have and so and and

The last expression is once more computed using parts, now with and so and This gives

Hence

Finally, the required volume is

Problem 2 asked to evaluate

A first attempt may go by using integration by parts, with and Unfortunately, this approach would not lead to simpler expressions, as both integrals and derivatives of and carry radicals.

If the expression inside the square root were of the form or we could use a trigonometric substitution. However, is not of this form. On the other hand, in Chapter 9 we saw that it is sometimes useful to complete squares, so we may want to try that here. We have:

This suggest trying the trigonometric substitution for We have and Also, when we have or and when we have or

In terms of the integral becomes

To evaluate expressions of this form, we use the identity and obtain

The second expression we recognize as For the first, we use either the reduction formula found in lecture, or integration by parts:

or

from which we get

Finally,

so the required integral equals

Typeset using LaTeX2WP. Here is a printable version of this post.

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Sunday, October 18th, 2009 at 1:27 pm and is filed under 175: Calculus II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]