1. From the textbook: Solve exercises 2.14, 3.3, 3.4, 3.9, 3.10, 3.16, 3.25.

2. a.Suppose that satisfies linearity (i.e., what the book calls additivity). Suppose also that is continuous. Show that is linear (i.e., it also satisfies homogeneity). b. Give an example of a that is additive but not homogeneous.

3. The goal of this exercise is to state and prove the rank-nullity theorem (Theorem 3.4 from the book) without the assumption that is finite dimensional. What we want to show is that if are vector spaces and is linear, then

.

First, we need to make sense of . Recall that if is a set, an equivalence relation on is a relation such that:

for any (reflexivity),

Whenever , then also (symmetry),

If and , then also (transitivity).

Given such an equivalence relation, the equivalence class of an element is the subset consisting of all those such that . The quotient is the collection of all equivalence classes, so if then there is some such that .

The point is that the equivalence classes form a partition of into pairwise disjoint, non-empty sets: Each is nonempty, since Clearly, the union of all the classes is (again, because any is in the class ), and if , then in fact (check this).

Ok. Back to . Define, in , an equivalence relation by: iff (Check that this is an equivalence relation). Then, as a set, we define to be . The reason why the null space is even mentioned here is because of the following (check this): iff .

We want to define addition in and scalar multiplication so that is actually a vector space.

Given and in , set , where if and , then . The problem with this definition is that in general there may be infinitely many such that and infinitely many such that . In order for this definition to make sense, we need to prove that for any such , we . Show this.

Given , and a scalar , define , where if , then . As before, we need to check that this is well-defined, i.e., that if , then also .

Check that is indeed a vector space with the operations we just defined.

Now we want to define a linear transformation from to , and argue that it is an isomorphism. Define by where . Once again, check that this is well-defined. Also, check that this is indeed linear, and a bijection.

Finally, to see that this is the “right” version of Theorem 3.4, we want to verify that if is finite dimensional. Prove this directly (i.e., without using the statement of Theorem 3.4).

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, February 11th, 2011 at 4:13 pm and is filed under 403/503: Linear Algebra II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

Hi Dr. Caicedo,

I just want to point out a possible typo. I believe is supposed to be

May the Math Be With You!

Tommy

Thanks, Tommy. I think it is fixed now.