[Edit: I have extended the deadline until the day of the final exam.]

Here are some extra credit problems. They are due at the latest by November 1, the day of the second midterm (just turn them in when you come to take the test), but you can of course turn them earlier. You can turn in as many as you want, this is completely voluntary.

All these problems can be solved arguing by contradiction. They tend to require at least one additional idea. The problems come for Loren C. Larson’s book “Problem-solving through problems.”

In a party with 2000 people, among any set of four there is at least one person who knows each of the other three. There are three people who are not mutually acquainted with each other. Prove that the other 1997 people know everyone at the party. (Assume that whenever a person knows a person , then also knows .)

Prove that there are no positive integers , , , and such that .

Every pair of communities in a country are linked directly by exactly one mode of transportation: bus, train, or airplane. All three modes of transportation are used in the country; no community is served by all three modes, and no three communities are linked pairwise by the same mode. For example, four communities can be linked according to these stipulations in the following way: bus, , , , ; train, ; airplane, .

Give an argument to show that no community can have a single mode of transportation leading to each of three different communities.

Give a proof to show that five communities cannot be linked in the required manner.

Let be a set of rational numbers with the property that whenever and are (not necessarily distinct) elements of , then also and . Moreover, suppose that for any rational number , exactly one of the following is true: , , .

Prove that 0 does not belong to .

Prove that all positive integers belong to .

Prove that is the set of all positive rational numbers.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Monday, October 10th, 2011 at 12:02 am and is filed under 187: Discrete mathematics. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

The characterization mentioned by Mohammad in his answer really dates back to Lev Bukovský in the early 70s, and, as Ralf and Fabiana recognize in their note, has nothing to do with $L$ or with reals (in their note, they indicate that after proving their result, they realized they had essentially rediscovered Bukovský's theorem). See MR0332477 (48 #1080 […]

For $\lambda$ a scalar, let $[\lambda]$ denote the $1\times 1$ matrix whose sole entry is $\lambda$. Note that for any column vectors $a,b$, we have that $a^\top b=[a\cdot b]$ and $a[\lambda]=\lambda a$. The matrix at hand has the form $A=vw^\top$. For any $u$, we have that $$Au=(vw^\top)u=v(w^\top u)=v[w\cdot u]=(w\cdot u)v.\tag1$$ This means that there are […]

That you can list $K $ does not mean you can list its complement. Perhaps the thing to note to build your intuition is that the program is not listing the elements of $K $ in increasing order. Indeed, maybe program 20 halts on input 20 but only does it after several million steps, while program 19 doesn't halt on input 19 and program 21 halts on input 2 […]

A reasonable follow-up question is whether there are some natural algebraic properties that the class of cardinals satisfies (provably in $\mathsf{ZF}$ or in $\mathsf{ZF}$ together with a weak axiom of choice). This is a natural problem and was investigated by Tarski in the 1940s, see MR0029954 (10,686f). Tarski, Alfred. Cardinal Algebras. With an Appendix: […]

Yes. Lev Bukovský proved a very general theorem that deals precisely with this problem: MR0332477 (48 #10804). Characterization of generic extensions of models of set theory, Fundamenta Mathematica 83 (1973), pp. 35–46. Bukovský characterizes when, for a given regular cardinal $\lambda$, $V$ is a $\lambda$-cc generic extension of a given inner model $W$. For […]

This is a question with a long history. As I mentioned in a comment, I think the best reference to get started on these matters is MR0373902 (51 #10102). Marek, W.; Srebrny, M. Gaps in the constructible universe. Ann. Math. Logic 6 (1973/74), 359–394. The paper does not require knowledge of fine structure, it is directly concerned with the question, provides […]