For ease, I re-list here all the presentations we had throughout the term. I also include some of them. If you gave a presentation and would like your notes to be included, please email them to me and I’ll add them here.

Jeremy Elison, Wednesday, October 12: Georg Cantor and infinity.

Kevin Byrne, Wednesday, October 26: Alan Turing and Turing machines.

Keith Ward, Monday, November 7: Grigori Perelman and the Poincaré conjecture.

David Miller, Wednesday, November 16: Augustin Cauchy and Cauchy’s dispersion equation.

Taylor Mitchell, Friday, November 18: Lajos Pósa and Hamiltonian circuits.

Sheryl Tremble, Monday, November 28: Pythagoras and the Pythagorean theorem.

Blake Dietz, Wednesday, November 30: and the Happy End problem.

Here are Jeremy’s notes on his presentation. Here is the Wikipedia page on Cantor, and a link to Cantor’s Attic, a wiki-style page discussing the different (set theoretic) notions of infinity.

Here are a link to the official page for the Alan Turing year, and the Wikipedia page on Turing. If you have heard of Conway’s Game of Life, you may enjoy the following video showing how to simulate a Turing machine within the Game of Life; the Droste effect it refers to is best explained in by H. Lenstra in a talk given at Princeton on April 3, 2007, and available here.

Here is a link to the Wikipedia page on Perelman, and the Clay Institute’s description of the Poincaré conjecture. In 2006, The New Yorker published an interesting article on the unfortunate “controversy” on the priority of Perelman’s proof.

Here are David’s slides on his presentation, and the Wikipedia page on Cauchy.

Here is a link to Ross Honsberger’s article on Pósa (including the result on Hamiltonian circuits that Taylor showed during her presentation).

Here are Sheryl’s slides on Pythagoras and his theorem. In case the gif file does not play, here is a separate copy:

The Pythagorean theorem has many proofs, even one discovered by President Garfield!

Finally, here is the Wikipedia page on . Oakland University has a nice page on him, including information on the number; see also the page maintained by Peter Komjáth, and an online depository of most of papers.

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Tuesday, January 10th, 2012 at 5:26 pm and is filed under 187: Discrete mathematics. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]