For ease, I re-list here all the presentations we had throughout the term. I also include some of them. If you gave a presentation and would like your notes to be included, please email them to me and I’ll add them here.

Jeremy Elison, Wednesday, October 12: Georg Cantor and infinity.

Kevin Byrne, Wednesday, October 26: Alan Turing and Turing machines.

Keith Ward, Monday, November 7: Grigori Perelman and the Poincaré conjecture.

David Miller, Wednesday, November 16: Augustin Cauchy and Cauchy’s dispersion equation.

Taylor Mitchell, Friday, November 18: Lajos Pósa and Hamiltonian circuits.

Sheryl Tremble, Monday, November 28: Pythagoras and the Pythagorean theorem.

Blake Dietz, Wednesday, November 30: and the Happy End problem.

Here are Jeremy’s notes on his presentation. Here is the Wikipedia page on Cantor, and a link to Cantor’s Attic, a wiki-style page discussing the different (set theoretic) notions of infinity.

Here are a link to the official page for the Alan Turing year, and the Wikipedia page on Turing. If you have heard of Conway’s Game of Life, you may enjoy the following video showing how to simulate a Turing machine within the Game of Life; the Droste effect it refers to is best explained in by H. Lenstra in a talk given at Princeton on April 3, 2007, and available here.

Here is a link to the Wikipedia page on Perelman, and the Clay Institute’s description of the Poincaré conjecture. In 2006, The New Yorker published an interesting article on the unfortunate “controversy” on the priority of Perelman’s proof.

Here are David’s slides on his presentation, and the Wikipedia page on Cauchy.

Here is a link to Ross Honsberger’s article on Pósa (including the result on Hamiltonian circuits that Taylor showed during her presentation).

Here are Sheryl’s slides on Pythagoras and his theorem. In case the gif file does not play, here is a separate copy:

The Pythagorean theorem has many proofs, even one discovered by President Garfield!

Finally, here is the Wikipedia page on . Oakland University has a nice page on him, including information on the number; see also the page maintained by Peter Komjáth, and an online depository of most of papers.

43.614000-116.202000

Like this:

LikeLoading...

Related

This entry was posted on Tuesday, January 10th, 2012 at 5:26 pm and is filed under 187: Discrete mathematics. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

Yes. This is a consequence of the Davis-Matiyasevich-Putnam-Robinson work on Hilbert's 10th problem, and some standard number theory. A number of papers have details of the $\Pi^0_1$ sentence. To begin with, take a look at the relevant paper in Mathematical developments arising from Hilbert's problems (Proc. Sympos. Pure Math., Northern Illinois Un […]

I am looking for references discussing two inequalities that come up in the study of the dynamics of Newton's method on real-valued polynomials (in one variable). The inequalities are fairly different, but it seems to make sense to ask about both of them in the same post. Most of the details below are fairly elementary, they are mostly included for comp […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Not necessarily. That $\mathfrak m$ is consistently singular is proved in MR0947850 (89m:03045) Kunen, Kenneth. Where $\mathsf{MA}$ first fails. J. Symbolic Logic 53(2), (1988), 429–433. There, Ken shows that $\mathfrak{m}$ can be singular of cofinality $\omega_1$. (Both links above are behind paywalls.)

Ignas: It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here. […]

$\mathrm{HOD}$ always contains $L$ because any inner model contains $L$, by absoluteness. How easy it is to exhibit a difference really depends on your background. For instance, $0^\sharp$, if it exists, is a real that always belongs to $\mathrm{HOD}$ but is not in $L$. If you are not too comfortable with large cardinals, but know forcing, you may enjoy prov […]

The classical definition of $0^\sharp$ is as (the set of Gödel numbers of) a theory, namely, the unique Ehrenfeucht-Mostowski blueprint satisfying certain properties (coding indiscernibility). This is a perfectly good definition formalizable in $\mathsf{ZFC}$, but $\mathsf{ZFC}$ or even mild extensions of $\mathsf{ZFC}$ are not enough to prove that there are […]

This is the descriptor operator. $(\iota x)\varphi x $ is the unique $x $ with the property specified by $\varphi $ (should it be the case that, indeed, there is precisely one such $x $). The Wikipedia entry on Principia has a very decent explanation of their notation.

The result is proved starting on page 90 ($\S4$ of Chapter III) of MR0953784 (90a:42008). Alexander S. Kechris and Alain Louveau. Descriptive set theory and the structure of sets of uniqueness. London Mathematical Society Lecture Note Series, 128. Cambridge University Press, Cambridge, 1987. viii+367 pp. ISBN: 0-521-35811-6. (The link is to the review at Mat […]

We are given an uncountable set $A$ of reals, and want to define $f:A\to A$ regressive with the property that $f$ is not constant on any uncountable set. (We need some convention on how to define $f(a)$ if $a$ is the minimum of $A$; this is not really important and I'll leave it up to you what to do here.) Let $\kappa=|A|$. We proceed by induction on $\ […]