On Google+, Willie Wong posted a link to this interesting example, by Brian Gawalt: BART fares and the triangle inequality.

There is a natural way of measuring distance in a subway or train system, the “price between stations” metric. It turns out that when applied to BART, the Bay Area Rapid Transit system, this fails to be a metric, with the consequence that sometimes it is cheaper to take a detour, exiting and reentering an intermediate station, than going directly to one’s destination. As Gawalt points out:

It’s probably important to recognize the 15 cents you save by jumping out costs about 15 to 20 minutes of your life waiting for the next train to come pick you up.

Willie adds an interesting comment, that I reproduce here:

Heh, while BART fails to be a metric space (with the price between stations metric), it is interesting to note that the single-fare systems form ultrametric spaces.

The British Rail / PostOffice metrics, of course, reflect systems with concentric zones in rings for which to get from one place to another almost certainly require passing through the centre. Like London Underground for example.

The public transport in Lausanne does not form a metric space using the price-between-stations metric for another (somewhat strange) reason: the price-between-stations function is set valued: the same two stations can have different prices depending on which route the bus/train takes, even without you getting off. (This is the problem with a zone based system. For certain places there are two more or less identical routes but one goes through two or three more zones than the other: some of the zones looks like they are slightly gerrymandered.) Of course, in this case most sensible people would just buy the cheapest available fare and take the cheapest available route, showing that a zone-based system is much more like a Riemannian manifold (and commuters try to travel in geodesics)…

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Friday, February 3rd, 2012 at 1:07 pm and is filed under 414/514: Analysis I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

qué interesantes esos casos ultramétricos – claro que si se tomara algo como el producto del precio por el tiempo usado, la cosa sería bien distinta en el caso del BART

I thought about this question a while ago, while teaching a topics course. Since one can easily check that $${}|{\mathbb R}|=|{\mathcal P}({\mathbb N})|$$ by a direct construction that does not involve diagonalization, the question can be restated as: Is there a proof of Cantor's theorem that ${}|X|

First of all, note (as Monroe does in his question) that if $\mathbb P,\mathbb Q$ are ccc, then $\mathbb P\times\mathbb Q$ is $\mathfrak c^+$-cc, as an immediate consequence of the Erdős-Rado theorem $(2^{\aleph_0})^+\to(\aleph_1)^2_2$. (This is to say, if $\mathbb P$ and $\mathbb Q$ do not admit uncountable antichains, then any antichain in their product ha […]

The technique of almost disjoint forcing was introduced in MR0289291 (44 #6482). Jensen, R. B.; Solovay, R. M. Some applications of almost disjoint sets. In Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp. 84–104, North-Holland, Amsterdam, 1970. Fix an almost disjoint family $X=(x_\alpha:\alpha

At the moment most of those decisions come from me, at least for computer science papers (those with a 68 class as primary). The practice of having proceedings and final versions of papers is not exclusive to computer science, but this is where it is most common. I've found more often than not that the journal version is significantly different from the […]

The answer is no in general. For instance, by what is essentially an argument of Sierpiński, if $(X,\Sigma,\nu)$ is a $\sigma$-finite continuous measure space, then no non-null subset of $X$ admits a $\nu\times\nu$-measurable well-ordering. The proof is almost verbatim the one here. It is consistent (assuming large cardinals) that there is an extension of Le […]

R. Solovay proved that the provably $\mathbf\Delta^1_2$ sets are Lebesgue measurable (and have the property of Baire). A set $A$ is provably $\mathbf\Delta^1_2$ iff there is a real $a$, a $\Sigma^1_2$ formula $\phi(x,y)$ and a $\Pi^1_2$ formula $\psi(x,y)$ such that $$A=\{t\mid \phi(t,a)\}=\{t\mid\psi(t,a)\},$$ and $\mathsf{ZFC}$ proves that $\phi$ and $\psi […]

A notion now considered standard of primitive recursive set function is introduced in MR0281602 (43 #7317). Jensen, Ronald B.; Karp, Carol. Primitive recursive set functions. In 1971 Axiomatic Set Thoory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) pp. 143–176 Amer. Math. Soc., Providence, R.I. The concept is use […]

The power of a set is its cardinality. (As opposed to its power set, which is something else.) As you noticed in the comments, Kurepa trees are supposed to have countable levels, although just saying that a tree has size and height $\omega_1$ is not enough to conclude this, so the definition you quoted is incomplete as stated. Usually the convention is that […]

The key problem in the absence of the axiom of replacement is that there may be well-ordered sets $S$ that are too large in the sense that they are longer than any ordinal. In that case, the collection of ordinals isomorphic to an initial segment of $S$ would be the class of all ordinals, which is not a set. For example, with $\omega$ denoting as usual the f […]

qué interesantes esos casos ultramétricos – claro que si se tomara algo como el producto del precio por el tiempo usado, la cosa sería bien distinta en el caso del BART