580 -Partition calculus (7)

May 6, 2009

 
Updates

Let me begin with a couple of updates.

In the last Corollary of the Appendix to lecture I.5, I indicate that in {{\sf ZF},} we have that

\displaystyle  \aleph(X)<\aleph({\mathcal P}^2(X))

whenever {\aleph(X)} is not {\aleph_\alpha} for some infinite limit ordinal {\alpha<\aleph_\alpha.} In fact,

\displaystyle  {\mathcal P}(\aleph(X))\preceq{\mathcal P}^2(X)

holds.

This result is best possible in terms of positive results. In Theorem 11 of the paper by John Hickman listed at the end, it is shown that for any such {\alpha} it is consistent with {{\sf ZF}} that there is an {X} with {\aleph(X)=\aleph_\alpha} for which {\aleph(X)=\aleph({\mathcal P}^2(X)).}

I also want to give an update on the topics discussed in lecture III.3.

{\mbox{Erd\H os}} and Hajnal asked whether it is possible to have infinite cardinals {\tau,\lambda,\kappa} such that

\displaystyle  \tau\rightarrow[\lambda]^\kappa_{\lambda^\kappa}.

Galvin and Prikry showed (see Corollaries 16 and 18 of lecture III.3) that any such {\tau} must be larger than {\lambda^\kappa} and that {\kappa<\lambda.}

Following a nice suggestion of Grigor Sargsyan, we use arguments as in Theorem 9 from lecture III.5 to show that this partition relation cannot hold.

The key is the following:

Lemma 1 If there are infinite cardinals {\tau,\lambda,\kappa} such that {\tau\rightarrow[\lambda]^\kappa_{\lambda^\kappa},} then for every sufficiently large {\gamma} there is an elementary embedding {j:M\rightarrow V_\gamma} such that {|M|=\lambda^\kappa,} {{\rm cp}(j)<\lambda,} {j(\lambda)=\lambda,} and {{}^\kappa M\subseteq M.}

 
Here is a brief sketch:

Proof: By Corollary 20 from lecture III.3, the given relation is equivalent to {\tau\rightarrow[\lambda]^\kappa_\lambda.} Consider a {\kappa}-Skolem function {F:[V_\gamma]^\kappa\rightarrow V_\gamma} so that any {Y\subset V_\gamma} closed under {F} is both closed under {\kappa}-sequences and an elementary substructure of {V_\gamma.}

Use {F} to define a coloring {G:[\tau]^\kappa\rightarrow\lambda} by setting {G(x)=F(x)} whenever {F(x)\in\lambda,} and {G(x)=0} otherwise. By assumption, there is {H\in[\tau]^\lambda} with {G''[H]^\kappa\ne\lambda.} Note that if {Y} is the closure of {H} under {F,} then {Y\cap\lambda=G''[H]^\kappa\cap\lambda\ne\lambda.} But we can assure that {|H\cap\lambda|=\lambda,} and the result follows by taking as {M} the transitive collapse of {H.} \Box

One concludes the proof by noting that it is impossible to have such embeddings. For this, it suffices that {{}^\omega M\subseteq M} and that {M} admits a fixed point past its critical point. One then obtains a contradiction just as in Kunen’s proof that there are no embeddings {j:V\rightarrow V,} see Corollary 9 in lecture III.3.

Similarly, Matthew Foreman has shown that there are no embeddings {j:M\rightarrow V} with {M} closed under {\omega}-sequences. The reason is that any such embedding must admit a fixed point past its critical point, as can be argued from the existence of scales. See the paper by Vickers and Welch listed at the end for a proof of this result.

On the other hand, it is still open whether one can have embeddings {j:M\rightarrow V} such that {M} computes cofinality {\omega} correctly.

1. The Baumgartner-Hajnal theorem

In Theorem 2 of lecture III.5 we showed the {\mbox{Erd\H os}}-Rado result that

\displaystyle  \kappa\rightarrow_{top}(Stationary,\omega+1)^2

whenever {\kappa} is regular. It is natural to wonder whether stronger results are possible. We restrict ourselves here to the case {\kappa=\omega_1.} Due to time constraints, we state quite a few results without proof.

Read the rest of this entry »

Advertisements