Homework 4

Andrés E. Caicedo

Due September 23, 2011

1. A set S of propositional statements is independent if for any $A \in S$, there is a valuation that makes all the formulas in $S \backslash\{A\}$ true and makes A false. One also says that A is not implied logically by the rest of the statements in S. (So, by definition, the empty set \emptyset is independent, and $S=\{A\}$ is independent iff A is not a tautology.)
Which of the sets
(a) $\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow q\}$
(b) $\{p \Rightarrow q, q \Rightarrow r, p \Rightarrow r\}$
(c) $\{p \Rightarrow r, r \Rightarrow q, q \Rightarrow p, r \Rightarrow(q \Rightarrow p)\}$
are independent and which are not? (Please explain.)
2. Let G be a graph with set of vertices V. A coloring of G with k colors $(k=1,2, \ldots)$ is a function c that assigns to each vertex in V one of the "colors" $1,2, \ldots, k$, in such a way that if $x, y \in V$ are adjacent (i.e., connected by an arc of G), then $c(x) \neq c(y)$. Describe a way to assign to each G a propositional statement P_{G} such that G is k colorable iff P_{G} is satisfiable. Explain why your statement works, and illustrate with a few examples.
3. Using resolution, show that $p \wedge q \wedge r$ is implied by the following set of formulas:

$$
\{p \Rightarrow q, q \Rightarrow r, r \Rightarrow p, p \vee q \vee r\}
$$

(Recall that this means that any valuation that makes all the formulas in the set true also must make the formula $p \wedge q \wedge r$ true.)
4. Using resolution, show that

$$
(\neg p \wedge \neg q \wedge r) \vee(\neg p \wedge \neg r) \vee(q \wedge r) \vee p
$$

is a tautology.
5. Describe an algorithm that given two whole numbers n, m, returns the number n^{m}. Write $\|n\|$ for the number of digits of n and $\|m\|$ for the number of digits of m. Express in terms of $\|n\|$ and $\|m\|$ the number of steps that your algorithm requires.

