
The resolution method

Andrés E. Caicedo

September 11, 2011

This note is based on lecture notes for the Caltech course Math 6c, prepared with A. Kechris
and M. Shulman.

We would like to have a mechanical procedure (algorithm) for checking whether a given set
of formulas logically implies another, that is, given A1, . . . , An, A, whether

(A1 ∧ · · · ∧An)⇒ A

is a tautology (i.e., it is true under all truth-value assignments.)

This happens iff
A1 ∧ · · · ∧An ∧ ¬A is unsatisfiable.

So it suffices to have an algorithm to check the (un)satisfiability of a single propositional
formula. The method of truth tables gives one such algorithm. We will now develop another
method which is often (with various improvements) more efficient in practice.

It will be also an example of a formal calculus. By that we mean a set of rules for generating
a sequence of strings in a language. Formal calculi usually start with a certain string or
strings as given, and then allow the application of one or more “rules of production” to
generate other strings.

A formula A is inconjunctive normal form iff it has the form

A1 ∧A2 ∧ · · · ∧An

where each Ai has the form
B1 ∨B2 ∨ · · · ∨Bk

and each Bi is either a propositional variable, or its negation. So A is in conjunctive normal
form iff it is a conjunction of disjunctions of variables and negated variables. The common
terminology is to call a propositional variable or its negation a literal.

Suppose A is a propositional statement which we want to test for satisfiability. First we
note (without proof) that although there is no known efficient algorithm for finding A′ in cnf
(conjunctive normal form) equivalent to A, it is not hard to show that there is an efficient
algorithm for finding A∗ in cnf such that:

A is satisfiable iff A∗ is satisfiable.

1



2

(But, in general, A∗ has more variables than A.)

So from now on we will only consider As in cnf, and the Resolution Method applies to such
formulas only. Say

A = (`1,1 ∨ · · · ∨ `1,n1) ∧ · · · ∧ (`k,1 ∨ · · · ∨ `k,nk
)

with `i,j literals. Since order and repetition in each conjunct

`i,1 ∨ · · · ∨ `i,ni (∗)

are irrelevant, we can replace (∗) by the set of literals

ci = {`i,1, `i,2, . . . , `i,ni}.

Such a set of literals is called a clause. It corresponds to the formula (∗). So the wff A
above can be simply written as a set of clauses (again since the order of the conjunctions is
irrelevant):

C = {c1, . . . , ck}
= {{`i,1, . . . `i,n1}, . . . , {`k,1, . . . , `k,nk

}}

Satisfiability of A means then simultaneous satisfiability of all of its clauses c1, . . . , ck, i.e.,
finding a valuation ν which makes ci true for each i, i.e., which for each i makes some `i,j
true.

Example 1

A = (p1 ∨ ¬p2) ∧ (p3 ∨ p3)
c1 = {p1,¬p2}
c2 = {p3}
C = {{p1,¬p2}, {p3}}.

From now on we will deal only with a set of clauses C = {c1, c2, . . . , cn}. It is possible to
consider also infinite sets C, but we will not do that here.

Satisfying C means (again) that there is a valuation which satisfies all c1, c2, . . . , i.e. if
ci = `i,1 ∨ · · · ∨ `i,ni , then for all i there is j so that it makes `i,j true.

Notice that if the set of clauses CA is associated as above to A (in cnf) and CB to B, then

A ∧B is satisfiable iff CA ∪ CB is satisfiable.

By convention we also have the empty clause 2, which contains no literals. The empty
clause is (by definition) unsatisfiable, since for a clause to be satisfied by a valuation, there
has to be some literal in the clause which it makes true, but this is impossible for the empty
clause, which has no literals.

For a literal u, let ū denote its “conjugate”, i.e.

ū = ¬p, if u = p,

ū = p if u = ¬p.



3

Definition 1 Suppose now c1, c2, c are three clauses. We say that c is a resolvent of c1, c2
if there is a u such that u ∈ c1, ū ∈ c2 and

c = (c1 \ {u}) ∪ (c2 \ {ū}).

We denote this by the diagram

c1 c2

c

We allow here the case c = 2, i.e. c1 = {u}, c2 = {ū}.

Example 2 (i)

{p,¬q, r} {q, r}

{p, r}

(ii)

{p,¬q} {¬p, q}

{q,¬q}

{p,¬q} {¬p, q}

{p,¬p}

(iii)

{p} {¬p}

2

Proposition 2 If c is a resolvent of c1, c2, then any assignment of truth values that makes
both c1 and c2 true also makes c true. (We view here c1, c2, c as formulas.)

Proof: Suppose a valuation ν satisfies both c1, c2 and let u be the literal used in the
resolution. If ν(u) = 1, then since ν(c2) = 1 we clearly have ν(c2 \{ū}) = 1 and so ν(c) = 1.
If ν(u) = 0, then ν(c1 \ {u}) = 1, so ν(c) = 1. 2

Definition 3 Let now C be a set of clauses. A proof by resolution from C is a sequence
c1, c2, . . . , cn of clauses such that each ci is either in C or else it is a resolvent of some cj , ck
with j, k < i. We call cn the goal or conclusion of the proof. If cn = 2, we call this a proof
by resolution of a contradiction from C or simply a refutation of C.

Example 3 Let C = {{p, q,¬r}, {¬p}, {p, q, r}, {p,¬q}}. Then the following is a refutation
of C:



4

c1 = {p, q,¬r} (in C)
c2 = {p, q, r} (in C)
c3 = {p, q} (resolvent of c1, c2 (by r))
c4 = {p,¬q} (in C)
c5 = {p} (resolvent of c3, c4 (by q))
c6 = {¬p} (in C)
c7 = 2 (resolvent of c5, c6 (by p)).

We can also represent this by a “tree”: There are lines from 2 to {p} and {¬p}, from {p}
to {p, q} and {p,¬q}, and from {p, q} to {p, q, r} and {p, q,¬r}:

{p, q, r} {p, q,¬r}

{p, q} {p,¬q}

{p} {¬p}

2

Terminal nodes correspond to clauses in C and each ∧ creates a “branch” of the tree,
corresponds to creating a resolvent. We call such a tree a resolution tree.

Example 4 Let C = {{¬p, s}, {p,¬q, s}, {p, q,¬r}, {p, r, s}, {¬s}}.

{¬p, s}

{p,¬q, s}

{p, q,¬r} {p, r, s}

{p, q, s}

{p, s}

{s} {¬s}

2

This can be also written as a proof as follows:

c1 = {p, q,¬r}
c2 = {p, r, s}
c3 = {p, q, s}



5

c4 = {p,¬q, s}
c5 = {p, s}
c6 = {¬p, s}
c7 = {s}
c8 = {¬s}
c9 = 2

(This proof is not unique. For example, we could move c8 before c3 and get another proof
corresponding to the same resolution tree. The relationship between proofs by resolution and
their corresponding trees is similar to that between parsing sequences and parse trees.)

The goal of proofs by resolution is to prove unsatisfiability of a set of clauses. The following
theorem tells us that they achieve their goal.

Theorem 4 Let C = {c1, c2, . . . , cm} be a set of clauses. Then C is unsatisfiable iff there
is a refutation of C.

The argument below uses the technique of mathematical induction, that we will study later.
You do not need to read this proof now, but I am including it here so we can use it when
the time comes. Feel free to stop by my office if you read the argument and have questions
about it.

Proof:

⇐: . This is usually called “Soundness of the proof system”. (“Soundness” is another
word for “correctness”.)

Let d1, . . . , dn be a proof of resolution from C. Then we can easily prove, by induction on
1 ≤ i ≤ n, that any assignment making all the ci true, must also make di true. But if
dn = 2, then dn is unsatisfiable, and therefore C must also be unsatisfiable.

⇒:. This is usually called “Completeness of the proof system”.

First we can assume that C has no clause ci which contains, for some literal u, both u and
ū (since such a clause can be dropped from C without affecting its satisfiability).

Notation. If u is a literal, let C(u) be the set of clauses resulting from C by canceling
every occurrence of u within a clause of C and eliminating all clauses of C containing ū
(this effectively amounts to setting u = 0).

Example. Let C = {{p, q,¬r}, {p,¬q}, {p, q, r}, {q, r}}. Then

C(r) = {{p,¬q}, {p, q}, {q}}
C(r̄) = {{p, q}, {p,¬q}}

Note that u, ū do not occur in C(u), C(ū). Note also that if C is unsatisfiable, so are
C(u), C(ū). Because if ν is a valuation satisfying C(u), then, since C(u) does not contain



6

u, ū, we can assume that ν does not assign a value to u. Then the valuation ν ′ which agrees
on all other variables with ν and gives ν(u) = 0 satisfies C. Similarly for C(ū).

So assume C is unsatisfiable, in order to construct a refutation of C. Say that all the
propositional variables occurring in clauses in C are among p1, . . . , pn. We prove then the
result by induction on n. In other words, we show that for each n, if C is a finite set of
clauses containing variables among p1, . . . , pn and C is unsatisfiable, there is a refutation of
C.

n = 1. In this case, we must have C = {{p1}, {¬p1}}, and hence we have the refutation
{p1}, {¬p1}, 2.

n→ n+1. Assume this has been proved for sets of clauses with variables among {p1, . . . , pn}
and consider a set of clauses C with variables among {p1, . . . , pn, pn+1}. Let u = pn+1.

Then C(u), C(ū) are also unsatisfiable and do not contain pn+1, so by induction hypothesis
there is a refutation d1, . . . dm, dm+1 = 2 for C(u) and a refutation e1, . . . , ek, ek+1 = 2 for
C(ū).

Consider first d1, . . . , dm+1. Each clause di is in C(u) or comes as a resolvent of two previous
clauses. Define then recursively d′1, . . . , d

′
m, d

′
m+1, so that either d′i = di or d′i = di ∪ {u}.

If di ∈ C(u), then it is either in C and then we put d′i = di or else is obtained from some
d∗i ∈ C by dropping u, i.e., di = d∗i \ {u}. Then put d′i = d∗i .

The other case is where for some j, k < i, we have that di is a resolvent of dj , dk, and thus by
induction d′j , d

′
k are already defined. The variable used in this resolution is in {p1, . . . , pn},

so we can use this variable to resolve from d′j , d
′
k to get d′i.

Thus d′m+1 = 2 or d′m+1 = {pn+1}, and d′1, . . . d
′
m, d

′
m+1 is a proof by resolution from C.

If d′m+1 = 2 we are done, so we can assume that d′m+1 = {pn+1}, i.e., d′1, . . . , d
′
m, {pn+1}

is a proof by resolution from C. Similarly, working with ū, we can define e′1, . . . e
′
k, e
′
k+1, a

proof by resolution from C with e′k+1 = 2 or e′k+1 = {¬pn+1}. If e′k+1 = 2 we are done,
otherwise e′1, . . . , e

′
k, {¬pn+1} is a proof by resolution from C. Then

d′1, . . . , d
′
m, {pn+1}, e′1, . . . , e′k, {¬pn+1},2

is a refutation from C. a

Example 5

C = {{p, q,¬r}, {¬p}, {p, q, r}, {p,¬q}} (u = r)
C(r) = {{¬p}, {p, q}, {p,¬q}}

C(¬r) = {{p, q}, {¬p}, {p,¬q}}



7

Refutation
from C(r)

Proof by
resolution from C

Refutation
from C(¬r)

Proof by
resolution from C

{p, q} → {p, q, r} {p, q} → {p, q,¬r}
{p,¬q} → {p,¬q} {p,¬q} → {p,¬q}
{p} → {p, r} {p} → {p,¬r}
{¬p} → {¬p} {¬p} → {¬p}

2→ {r} 2→ {¬r}
2

Remark 5 Notice that going from n to n + 1 variables “doubles” the length of the proof,
so this gives an exponential bound for the refutation.

Remark 6 The method of refutation by resolution is non-deterministic–there is no unique
way to arrive at it. Various strategies have been devised for implementing it.

One is by following the recursive procedure used in the proof of theorem 4. Another is by
brute force. Start with a finite set of clauses C. Let C0 = C. Let C1 = C together with
all clauses obtained by resolving all possible pairs in C0, C2 = C1 together with all clauses
obtained by resolving all possible pairs from C1, etc. Since any set of clauses whose variables
are among p1, . . . , pn cannot have more than 22n elements, this will stop in at most 22n many
steps. Put C22n = C∗. If 2 ∈ C∗ then we can produce a refutation proof of about that size
(i.e., 22n). Otherwise, 2 6∈ C∗ and C is satisfiable.

Other strategies are more efficient in special cases, but none are known to work in general.


