# 187 §3- DISCRETE MATHEMATICS - Quiz 4 

Instructor: Andrés E. Caicedo

September 20, 2011

Name $\qquad$

1. (a) Explain why if we assume $p$ and $p \Rightarrow q$ then we can conclude $q$.
(b) Explain why, in order to prove a statement of the form $A \Rightarrow B$, it suffices to assume $A$, and somehow conclude $B$.
(c) Recall that a tautology is a propositional statement that is always true. Use parts (a) and (b) above to show that the following is a tautology:

$$
(p \Rightarrow q) \Longrightarrow((q \Rightarrow r) \Longrightarrow(p \Rightarrow r))
$$

2. The sequence of Fibonacci numbers

$$
1,1,2,3,5,8,13,21,34,55,89,144, \ldots
$$

is obtained as follows: We start with 1 and 1. After that, each new number on the list is the sum of the previous 2 :

$$
2=1+1, \quad 3=2+1, \quad 5=3+2, \quad 8=5+3, \quad 13=8+5, \ldots
$$

Consider the following decision problem:
Given a number $n$, is $n$ a Fibonacci number?
Describe an algorithm that solves this problem. Explain why your algorithm gives the right answer.

