Luminy – Hugh Woodin: Ultimate L (I)

October 19, 2010

The XI International Workshop on Set Theory took place October 4-8, 2010. It was hosted by the CIRM, in Luminy, France. I am very glad I was invited, since it was a great experience: The Workshop has a tradition of excellence, and this time was no exception, with several very nice talks. I had the chance to give a talk (available here) and to interact with the other participants. There were two mini-courses, one by Ben Miller and one by Hugh Woodin. Ben has made the slides of his series available at his website.

What follows are my notes on Hugh’s talks. Needless to say, any mistakes are mine. Hugh’s talks took place on October 6, 7, and 8. Though the title of his mini-course was “Long extenders, iteration hypotheses, and ultimate L”, I think that “Ultimate L” reflects most closely the content. The talks were based on a tiny portion of a manuscript Hugh has been writing during the last few years, originally titled “Suitable extender sequences” and more recently, “Suitable extender models” which, unfortunately, is not currently publicly available.

The general theme is that appropriate extender models for supercompactness should provably be an ultimate version of the constructible universe L. The results discussed during the talks aim at supporting this idea.

Read the rest of this entry »


502 – Notes on compactness

October 1, 2009

The goal of this note is to present a proof of the following fundamental result. A theory {T} is said to be satisfiable iff there is a model of {T.}

Theorem 1 (Compactness) Let {T} be a first order theory. Suppose that any finite subtheory {T_0\subseteq T} is satisfiable. Then {T} itself is satisfiable.

 

As indicated on the set of notes on the completeness theorem, compactness is an immediate consequence of completeness. Here I want to explain a purely semantic proof, that does not rely on the notion of proof.

The argument I present uses the notion of ultraproducts. Although their origin is in model theory, ultraproducts have become an essential tool in modern set theory, so it seems a good idea to present them here. We will require the axiom of choice, in the form of Zorn’s lemma.

The notion of ultraproduct is a bit difficult to absorb the first time one encounters it. I recommend working out through some examples in order to understand it well. Here I confine myself to the minimum necessary to make sense of the argument.

Read the rest of this entry »


580 -III. Partition calculus

March 21, 2009

 

1. Introduction

Partition calculus is the area of set theory that deals with Ramsey theory; it is devoted to Ramsey’s theorem and its infinite and infinitary generalizations. This means both strengthenings of Ramsey’s theorem for sets of natural numbers (like the Carlson-Simpson or the Galvin-Prikry theorems characterizing the completely Ramsey sets in terms of the Baire property) and for larger cardinalities (like the {\mbox{Erd\H os}}-Rado theorem), as well as variations in which the homogeneous sets are required to possess additional structure (like the Baumgartner-Hajnal theorem).

Ramsey theory is a vast area and by necessity we won’t be able to cover (even summarily) all of it. There are many excellent references, depending on your particular interests. Here are but a few:

  • Paul {\mbox{Erd\H os},} András Hajnal, Attila Máté, Richard Rado, Combinatorial set theory: partition relations for cardinals, North-Holland, (1984).
  • Ronald Graham, Bruce Rothschild, Joel Spencer, Ramsey theory, John Wiley & Sons, second edn., (1990).
  • Neil Hindman, Dona Strauss, Algebra in the Stone-{\mbox{\bf \v Cech}} compactification, De Gruyter, (1998).
  • Stevo {\mbox{Todor\v cevi\'c},} High-dimensional Ramsey theory and Banach space geometry, in Ramsey methods in Analysis, Spiros Argyros, Stevo {\mbox{Todor\v cevi\'c},} Birkhäuser (2005), 121–257.
  • András Hajnal, Jean Larson, Partition relations, in Handbook of set theory, Matthew Foreman, Akihiro Kanamori, eds., to appear.

I taught a course on Ramsey theory at Caltech a couple of years ago, and expect to post notes from it at some point. Here we will concentrate on infinitary combinatorics, but I will briefly mention a few finitary results.

Read the rest of this entry »