Only recently I was made aware of a note dated November 22, 2001, posted on Harvey Friedman‘s page, “Lecture notes on enormous integers”. In section 8, Friedman recalls the definition of the function , the length of the longest possible sequence from with the property that for no , the sequence is a subsequence of .

Friedman says that “A good upper bound for is work in progress”, and states (without proof):

Theorem., where .

Here, are the functions of the Ackermann hierarchy (as defined in the previous post).

He also indicates a much larger lower bound for . We need some notation first: Let . Use exponential notation to denote composition, so .

Theorem.Let . Then .

He also states a result relating the rate of growth of the function to what logicians call subsystems of first-order arithmetic. A good reference for this topic is the book Metamathematics of First-order Arithmetic, by Hájek and Pudlák, available through Project Euclid.

This entry was posted on Thursday, April 12th, 2012 at 1:16 pm and is filed under 305: Abstract Algebra I. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

I learned of this problem through Su Gao, who heard of it years ago while a post-doc at Caltech. David Gale introduced this game in the 70s, I believe. I am only aware of two references in print: Richard K. Guy. Unsolved problems in combinatorial games. In Games of No Chance, (R. J. Nowakowski ed.) MSRI Publications 29, Cambridge University Press, 1996, pp. […]

Let $C$ be the standard Cantor middle-third set. As a consequence of the Baire category theorem, there are numbers $r$ such that $C+r$ consists solely of irrational numbers, see here. What would be an explicit example of a number $r$ with this property? Short of an explicit example, are there any references addressing this question? A natural approach would […]

Suppose $M$ is an inner model (of $\mathsf{ZF}$) with the same reals as $V$, and let $A\subseteq \mathbb R$ be a set of reals in $M$. Suppose further that $A$ is determined in $M$. Under these assumptions, $A$ is also determined in $V$. The point is that since winning strategies are coded by reals, and any possible run of the game for $A$ is coded by a real, […]

Yes. This is obvious if there are no such cardinals. (I assume that the natural numbers of the universe of sets are the true natural numbers. Otherwise, the answer is no, and there is not much else to do.) Assume now that there are such cardinals, and that "large cardinal axiom" is something reasonable (so, provably in $\mathsf{ZFC}$, the relevant […]

Please send an email to mathrev@ams.org, explaining the issue. (This is our all-purpose email address; any mistakes you discover, not just regarding references, you can let us know there.) Give us some time, I promise we'll get to it. However, if it seems as if the request somehow fell through the cracks, you can always contact one of your friendly edit […]

There are continuum many (i.e., $|\mathbb R|$) such functions. First of all, there are only $|\mathbb R|$ many continuous functions, so this is an upper bound. On the other hand, for any real $r$, $f(x)=x+r$ satisfies the requrements, so there are at least $|\mathbb R|$ many such functions.

I'm posting an answer based on Asaf's comments. The following reference addresses this question to some extent: MR0525577 (80g:01021). Dauben, Joseph Warren. Georg Cantor. His mathematics and philosophy of the infinite. Harvard University Press, Cambridge, Mass.-London, 1979. xii+404 pp. ISBN: 0-674-34871-0. Reprinted: Princeton University Press, P […]

Let's see. We already know that if $A,B$ are ordinals then so is $A\cap B$. Also, an initial segment of $A$ is either $A$ itself or else it has the form $A_a:=\{ x\in A:x