515 – Caratheodory’s characterization of measurability (Homework 3)

This set is due Friday, April 27.

The goal of these problems is to prove Carathéodory‘s theorem that “extracts” a measure from any outer measure. In particular, when applied to Lebesgue outer measure, this construction recovers Lebesgue measure.

Recall that an outer measure on a set is a function such that:

.

implies .

For any subsets of , we have .

Given a set and an outer measure on , let denote the collection of subsets of with the property that

for all .

Prove that is a -algebra on .

This requires some work. You may want to proceed by stages:

First, check that is precisely the collection of sets such that, for any , we have

.

Check that , and that is closed under complements.

Check that is closed under finite unions. Conclude that it is also closed under set theoretic differences: If , then .

The crux of the matter, of course, is to verify that is closed under countable unions. Accordingly, suppose that for all , and let .

Let , and note that , where , and, recursively, for . (Note also that for all .)

Then, for , , and for all ,

Conclude that . (Why does this limit exist?)

Also, prove that . (Again, why does this limit exist?)

Conclude from these inequalities and item 1 that . This concludes the proof that is a -algebra.

Now let denote the restriction of to .

Prove that is a measure space.

In view of what we have proved already, note that this “reduces” to prove that, whenever are pairwise disjoint elements of , then

.

With notation as before, check first that for all , and conclude.

Prove that is in fact a complete measure. Recall that this means that any subset of a set of -measure 0 is measurable and also has measure 0. In fact, check that if , then , and conclude from this.

Suppose that . Show that the restriction of to is an outer measure on . Denote by resp. the set defined above, for resp. . Show that if , then . Suppose that is measurable (i.e., that ). Is ? If so, is this the only case where equality holds?

Prove that if is , Lebesgue outer measure on , then is precisely , Lebesgue measure on . (This may be a bit easier for than in general.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, April 12th, 2012 at 2:15 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

(As I pointed out in a comment) yes, partial Woodinness is common in arguments in inner model theory. Accordingly, you obtain determinacy results addressing specific pointclasses (typically, well beyond projective). To illustrate this, let me "randomly" highlight two examples: See here for $\Sigma^1_2$-Woodin cardinals and, more generally, the noti […]

I am not sure which statement you heard as the "Ultimate $L$ axiom," but I will assume it is the following version: There is a proper class of Woodin cardinals, and for all sentences $\varphi$ that hold in $V$, there is a universally Baire set $A\subseteq{\mathbb R}$ such that, letting $\theta=\Theta^{L(A,{\mathbb R})}$, we have that $HOD^{L(A,{\ma […]

A Wadge initial segment (of $\mathcal P(\mathbb R)$) is a subset $\Gamma$ of $\mathcal P(\mathbb R)$ such that whenever $A\in\Gamma$ and $B\le_W A$, where $\le_W$ denotes Wadge reducibility, then $B\in\Gamma$. Note that if $\Gamma\subseteq\mathcal P(\mathbb R)$ and $L(\Gamma,\mathbb R)\models \Gamma=\mathcal P(\mathbb R)$, then $\Gamma$ is a Wadge initial se […]

Craig: For a while, there was some research on improving bounds on the number of variables or degree of unsolvable Diophantine equations. Unfortunately, I never got around to cataloging the known results in any systematic way, so all I can offer is some pointers to relevant references, but I am not sure of what the current records are. Perhaps the first pape […]

Yes. Consider, for instance, Conway's base 13 function $c$, or any function that is everywhere discontinuous and has range $\mathbb R$ in every interval. Pick continuous bijections $f_n:\mathbb R\to(-1/n,1/n)$ for $n\in\mathbb N^+$. Pick a strictly decreasing sequence $(x_n)_{n\ge1}$ converging to $0$. Define $f$ by setting $f(x)=0$ if $x=0$ or $\pm x_n […]

All proofs of the Bernstein-Cantor-Schroeder theorem that I know either directly or with very little work produce an explicit bijection from any given pair of injections. There is an obvious injection from $[0,1]$ to $C[0,1]$ mapping each $t$ to the function constantly equal to $t$, so the question reduces to finding an explicit injection from $C[0,1]$ to $[ […]

One way we formalize this "limitation" idea is via interpretative power. John Steel describes this approach carefully in several places, so you may want to read what he says, in particular at Solomon Feferman, Harvey M. Friedman, Penelope Maddy, and John R. Steel. Does mathematics need new axioms?, The Bulletin of Symbolic Logic, 6 (4), (2000), 401 […]

"There are" examples of discontinuous homomorphisms between Banach algebras. However, the quotes are there because the question is independent of the usual axioms of set theory. I quote from the introduction to W. Hugh Woodin, "A discontinuous homomorphism from $C(X)$ without CH", J. London Math. Soc. (2) 48 (1993), no. 2, 299-315, MR1231 […]

This is Hausdorff's formula. Recall that $\tau^\lambda$ is the cardinality of the set ${}^\lambda\tau$ of functions $f\!:\lambda\to\tau$, and that $\kappa^+$ is regular for all $\kappa$. Now, there are two possibilities: If $\alpha\ge\tau$, then $2^\alpha\le\tau^\alpha\le(2^\alpha)^\alpha=2^\alpha$, so $\tau^\alpha=2^\alpha$. In particular, if $\alpha\g […]

Fix a model $M$ of a theory for which it makes sense to talk about $\omega$ ($M$ does not need to be a model of set theory, it could even be simply an ordered set with a minimum in which every element has an immediate successor and every element other than the minimum has an immediate predecessor; in this case we could identify $\omega^M$ with $M$ itself). W […]