515 – Caratheodory’s characterization of measurability (Homework 3)

This set is due Friday, April 27.

The goal of these problems is to prove Carathéodory‘s theorem that “extracts” a measure from any outer measure. In particular, when applied to Lebesgue outer measure, this construction recovers Lebesgue measure.

Recall that an outer measure on a set is a function such that:

.

implies .

For any subsets of , we have .

Given a set and an outer measure on , let denote the collection of subsets of with the property that

for all .

Prove that is a -algebra on .

This requires some work. You may want to proceed by stages:

First, check that is precisely the collection of sets such that, for any , we have

.

Check that , and that is closed under complements.

Check that is closed under finite unions. Conclude that it is also closed under set theoretic differences: If , then .

The crux of the matter, of course, is to verify that is closed under countable unions. Accordingly, suppose that for all , and let .

Let , and note that , where , and, recursively, for . (Note also that for all .)

Then, for , , and for all ,

Conclude that . (Why does this limit exist?)

Also, prove that . (Again, why does this limit exist?)

Conclude from these inequalities and item 1 that . This concludes the proof that is a -algebra.

Now let denote the restriction of to .

Prove that is a measure space.

In view of what we have proved already, note that this “reduces” to prove that, whenever are pairwise disjoint elements of , then

.

With notation as before, check first that for all , and conclude.

Prove that is in fact a complete measure. Recall that this means that any subset of a set of -measure 0 is measurable and also has measure 0. In fact, check that if , then , and conclude from this.

Suppose that . Show that the restriction of to is an outer measure on . Denote by resp. the set defined above, for resp. . Show that if , then . Suppose that is measurable (i.e., that ). Is ? If so, is this the only case where equality holds?

Prove that if is , Lebesgue outer measure on , then is precisely , Lebesgue measure on . (This may be a bit easier for than in general.)

43.614000-116.202000

Advertisements

Like this:

LikeLoading...

Related

This entry was posted on Thursday, April 12th, 2012 at 2:15 pm and is filed under 515: Analysis II. You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.

The only reference I know for precisely these matters is the handbook chapter MR2768702. Koellner, Peter; Woodin, W. Hugh. Large cardinals from determinacy. In Handbook of set theory. Vols. 1, 2, 3, 1951–2119, Springer, Dordrecht, 2010. (Particularly, section 7.) For closely related topics, see also the work of Yong Cheng (and of Cheng and Schindler) on Harr […]

As other answers point out, yes, one needs choice. The popular/natural examples of models of ZF+DC where all sets of reals are measurable are models of determinacy, and Solovay's model. They are related in deep ways, actually, through large cardinals. (Under enough large cardinals, $L({\mathbb R})$ of $V$ is a model of determinacy and (something stronge […]

Throughout the question, we only consider primes of the form $3k+1$. A reference for cubic reciprocity is Ireland & Rosen's A Classical Introduction to Modern Number Theory. How can I count the relative density of those $p$ (of the form $3k+1$) such that the equation $2=3x^3$ has no solutions modulo $p$? Really, even pointers on how to say anything […]

(1) Patrick Dehornoy gave a nice talk at the Séminaire Bourbaki explaining Hugh Woodin's approach. It omits many technical details, so you may want to look at it before looking again at the Notices papers. I think looking at those slides and then at the Notices articles gives a reasonable picture of what the approach is and what kind of problems remain […]

It is not possible to provide an explicit expression for a non-linear solution. The reason is that (it is a folklore result that) an additive $f:{\mathbb R}\to{\mathbb R}$ is linear iff it is measurable. (This result can be found in a variety of places, it is a standard exercise in measure theory books. As of this writing, there is a short proof here (Intern […]

Let $s$ be the supremum of the $\mu$-measures of members of $\mathcal G$. By definition of supremum, for each $n$, there is $G_n\in\mathcal G$ with $\mu(G_n)>s-1/n$. Letting $G=\bigcup_n G_n$, then $G\in \mathcal G$ since $\mathcal G$ is closed under countable unions, and $\mu(G)=s$, since it is at least $\sup_n\mu(G_n)$ but it is at most $s$ (by definiti […]

The result you are trying to prove is false. For example, if $a=\omega+1$ and $b=\omega+\omega$, then $a+b=\omega\cdot 3>b$. Here is what is true: first, the key result you should establish (by induction) is that An ordinal $\alpha>0$ has the property that for all $\beta

Very briefly: Yes, there are several programs being developed that can be understood as pursuing new axioms for set theory. For the question itself of whether pursuing new axioms is a reasonably line of inquiry, see the following (in particular, the paper by John Steel): MR1814122 (2002a:03007). Feferman, Solomon; Friedman, Harvey M.; Maddy, Penelope; Steel, […]

This is a very interesting question and the subject of current research in set theory. There are, however, some caveats. Say that a set of reals is $\aleph_1$-dense if and only if it meets each interval in exactly $\aleph_1$-many points. It is easy to see that such sets exist, have size $\aleph_1$, and in fact, if $A$ is $\aleph_1$-dense, then between any tw […]